
with Podman on Fedora 29

Alessandro Arrichiello
Solution Architect, Red Hat

Containers 101

alezzandro@gmail.com

Containers 101 with Podman2

WHO I AM?

I'm Alessandro Arrichiello, graduated in Computer
Engineering at "Federico II" university of Naples.
I’m currently working as a Solution Architect for
Red Hat.

I'm a very passionate GNU/Linux fan.
My first Red Hat Linux installation was at age of 14,
after that I never left it and kept using Linux in
home and worklife.

http://alezzandro.com

http://alezzandro.com

Containers 101 with Podman3

WHAT ABOUT ME AND FEDORA?

I use Fedora as primary Operating System for
work/personal usage from 5+ years.

I love placing stickers all over my laptop and
let my friends and colleagues guess the Open
Source project behind the logo.

My favourite Window Manager is GNOME :) [alex@lenny ~]$ cat /etc/fedora-release
Fedora release 29 (Twenty Nine)

Containers 101 with Podman4

WHAT ABOUT THE LOGO?

You will find the Red Hat logo in almost every slide
because the content comes from Red Hat’s slidedeck

Containers 101 with Podman5

AGENDA

● What are Linux Containers?
● Deep dive in Containers Architecture
● Containers Runtimes
● Pull and Run Containers
● Managing Networking, Logging, Security and Persistent

Storage

● System Services in Containers

LINUX CONTAINERS

Containers 101 with Podman7

WHAT ARE CONTAINERS?
It Depends Who You Ask

● Application processes on a shared kernel

● Simpler, lighter, and denser than VMs

● Portable across different environments

● Package apps with all dependencies

● Deploy to any environment in seconds

● Easily accessed and shared

INFRASTRUCTURE APPLICATIONS

Containers 101 with Podman8

VIRTUAL MACHINES AND CONTAINERS

VIRTUAL MACHINES CONTAINERS

VM isolates the hardware Container isolates the process

VM

OS Dependencies

Kernel

Hypervisor

Hardware

App App App App

Container Host (Kernel)

Container

App

OS deps

Container

App

OS deps

Container

App

OS deps

Container

App

OS deps

Hypervisor

Hardware

Containers 101 with Podman9

Virtual Machine

Application

OS dependencies

Operating System

VIRTUAL MACHINES AND CONTAINERS

VM Isolation
Complete OS
Static Compute
Static Memory
High Resource Usage

Container Isolation
Shared Kernel
Burstable Compute
Burstable Memory
Low Resource Usage

Container Host

Container

Application

OS dependencies

Containers 101 with Podman10

Virtual machines are NOT portable across hypervisor and
do NOT provide portable packaging for applications

APPLICATION PORTABILITY WITH VM

VM Type X

Application

OS dependencies

Operating System

BARE METAL PRIVATE CLOUD PUBLIC CLOUDVIRTUALIZATIONLAPTOP

Application

OS dependencies

Operating System

VM Type Y

Application

OS dependencies

Operating System

VM Type Z

Application

OS dependencies

Operating System

Guest VM

Application

OS dependencies

Operating System

Containers 101 with Podman11

APPLICATION PORTABILITY WITH CONTAINERS

LAPTOP

Container

Application

OS dependencies

Guest VM

Linux

BARE METAL

Container

Application

OS dependencies

Linux

VIRTUALIZATION

Container

Application

OS dependencies

Virtual Machine

Linux

PRIVATE CLOUD

Container

Application

OS dependencies

Virtual Machine

Linux

PUBLIC CLOUD

Container

Application

OS dependencies

Virtual Machine

Linux

Linux Containers + Linux Host = Guaranteed Portability
Across Any Infrastructure

CONTAINERS DEEP DIVE

Containers 101 with Podman13

A container is the smallest compute unit

CONTAINER

Containers 101 with Podman14

containers are created from
container images

CONTAINERCONTAINER
IMAGE

BINARY RUNTIME

Containers 101 with Podman15

Even base images are made up of layers:

● Libraries (glibc, libssl)
● Binaries (httpd)
● Packages (rpms)
● Dependency Management (yum)
● Repositories (rhel7)
● Image Layer & Tags (rhel7:7.5-404)
● At scale, across teams of developers

and CI/CD systems, consider all of
the necessary technology

CONTAINER IMAGE
Open source code/libraries, in a Linux distribution, in a tarball

Containers 101 with Podman16

IMAGE REGISTRY

container images are stored in
an image registry

CONTAINER

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

CONTAINER
IMAGE

Containers 101 with Podman17

Fedora Containers’ Images Registry

Containers 101 with Podman

REGISTRY SERVERS
Better than virtual appliance market places :-)

Defines a standard way to:
● Find images
● Run images
● Build new images
● Share images
● Pull images
● Introspect images
● Shell into running container
● Etc, etc, etc

Containers 101 with Podman19

an image repository contains all versions of
an image in the image registry

IMAGE REGISTRY

frontend:latest
frontend:2.0
frontend:1.1
frontend:1.0

CONTAINER
IMAGE

mongo:latest
mongo:3.7
mongo:3.6
mongo:3.4

CONTAINER
IMAGE

myregistry/frontend myregistry/mongo

Containers 101 with Podman20

Important corrections

● Containers do not run ON docker.
Containers are processes - they run
on a container host. Containers are
Linux.

● The docker daemon is one of the
many user space tools/libraries that
talks to the kernel to set up
containers

CONTAINERS DON’T RUN ON DOCKER
The Internet is WRONG :-)

Containers 101 with Podman21

Tightly coupled communication through
the kernel - all or nothing feature support:

● Operating System (kernel)
● Container Runtime (runc)
● And other tools for orchestrate

container in orchestrators like
Kubernetes (CRI-O, Kubelet..)

CONTAINER HOST
Regular processes, daemons, and containers all run side by side

Containers 101 with Podman22

The kernel is the gatekeeper for all access
to resources and data structures:

● System calls
● Memory
● CPU
● Devices
● Drivers
● Filesystems

KERNEL
User space vs. kernel

Containers 101 with Podman23

Normal processes are created, destroyed,
and managed with system calls:

● Fork() - Think Apache
● Exec() - Think ps
● Exit()
● Kill()
● Open()
● Close()
● System()

KERNEL
Creating regular Linux processes

Containers 101 with Podman24

What is a container anyway?

● No kernel definition for what a
container is - only processes

● Clone() - closest we have
● Creates namespaces for kernel

resources
○ Mount, UTC, IPC, PID, Network,

User
● Essentially, virtualized data

structures

KERNEL
Creating “containerized” Linux processes

Containers 101 with Podman25

Two major jobs:

● Provide an API - can be consumed by
users or robots

● Prepares data & metadata from
container image

○ Creates a manifest.json file
○ Graph driver decodes the container

images layers - maps to filesystem
(overlay or device mapper)

○ Prepares a directory to be mounted

CONTAINER ENGINE
Provides an API prepares data & metadata for runc

Containers 101 with Podman26

In action:

● Takes command line options
● Creates and prepares manifest.json
● Pulls image
● Decodes image on disk (graph

drivers)
● Hands directory and manifest.json to

container runtime (runc)

CONTAINER ENGINE
Regular processes, daemons, and containers all run side by side

CONTAINER RUNTIMES

Containers 101 with Podman28

EARLY CONCERNS WITH DOCKER
Enterprise Build and Runtime concerns

Since the early days users had concerns:

● Build requires a daemon

● Build requires a running container

● Build has secret handling issues

● Root/privileged concerns at runtime

● Regression for integration with container platforms (Kubernetes)

Containers 101 with Podman29

● Docker, Red Hat et al. June 2015
● Two Specifications

○ Runtime
■ How to run a “filesystem bundle” that is unpacked on disk

○ Image Format
■ How to create an OCI Image that contains sufficient information

to launch the application on the target platform

Containers 101 with Podman30

● Version 1.0 Released July 19th 2017
○ https://github.com/opencontainers/runtime-spec/releases/tag/v1.0.0

● runc - default implementation
● support other runtimes as they develop
● Docker 1.11 uses runc as the default back end
● ocitool https://github.com/opencontainers/ocitools

○ OCI runtime specification tools

OCI - RUNTIME

https://github.com/opencontainers/runtime-spec/releases/tag/v1.0.0
https://github.com/opencontainers/ocitools

Containers 101 with Podman31

● Version 1.0 Released July 19th 2017
○ https://github.com/opencontainers/image-spec/releases/tag/v1.0.0

● Performed by a build system
● Output includes :

○ Image manifest
○ Filesystem serialization
○ Image configuration which includes information

such as application arguments, environments, etc.

OCI - IMAGE FORMAT

https://github.com/opencontainers/image-spec/releases/tag/v1.0.0

Containers 101 with Podman32

Podman is included in latest Fedora 29.
A daemon-less CLI/API for running, managing, and
debugging OCI containers and pods
● Fast and lightweight
● Leverages runC
● Provides a “docker-like” syntax for working with

containers
● Remote management API via Varlink
● Provides systemd integration and advanced

namespace isolation
kernel

PODMAN

Containers 101 with Podman33

● Part of ProjectAtomic project on GitHub
● Client only tool that is based on the Docker CLI.

(same+)
● Does not require a running daemon
● Utilizes :

○ containers/image & containers/storage
○ oci-runtime-tool/generate
○ runc (or other OCI compatible runtime)

● Shares state with other tool like: CRI-O and
Buildah

PODMAN

Images

Image
Registry

Containers

Kernel

CONTAINER CLI

EXAMPLE:
PULLING & RUNNING A CONTAINER

Containers 101 with Podman35

EXAMPLE: Pulling a container image
[root@lenny ~]# podman pull registry.fedoraproject.org/f29/httpd
Trying to pull registry.fedoraproject.org/f29/httpd...Getting image source signatures
Copying blob sha256:281a37f51f750824a0addded649118d193f071a12bea2bca046a89e564df2da1
 85.68 MB / 85.68 MB [===] 16s
Copying blob sha256:ab0d48faadd2893c7cb2693ba352fafe60d7faf1fb5cf005164de77ecc340c66
 4.64 MB / 4.64 MB [==] 1s
Copying blob sha256:e1bf69dce18d7eb90fdc5ee14f2170f274c5ae221589d323c7f780e0d507e9b7
 49.77 MB / 49.77 MB [==] 6s
Copying config sha256:532763348c4e0991ea7eb439676675b0b9e5518db9a9f21b9862abfb533e6e83
 6.66 KB / 6.66 KB [==] 0s
Writing manifest to image destination
Storing signatures
532763348c4e0991ea7eb439676675b0b9e5518db9a9f21b9862abfb533e6e83
[root@lenny ~]#
[root@lenny ~]# podman images
REPOSITORY TAG IMAGE ID CREATED SIZE
registry.fedoraproject.org/f29/httpd latest 532763348c4e 4 weeks ago 462MB
[root@lenny ~]#
[root@lenny ~]# podman inspect httpd
[
 {
 "Id": "532763348c4e0991ea7eb439676675b0b9e5518db9a9f21b9862abfb533e6e83",
...

We start pulling down a container image and inspecting it for showing details.

Containers 101 with Podman36

EXAMPLE: Running a container image 1/3
[root@lenny ~]# podman run httpd
=> sourcing 10-set-mpm.sh ...
=> sourcing 20-copy-config.sh ...
=> sourcing 40-ssl-certs.sh ...
AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using
10.0.2.100. Set the 'ServerName' directive globally to suppress this message
[Tue Dec 04 19:21:29.834230 2018] [ssl:warn] [pid 1:tid 140546178489728] AH01909: 10.0.2.100:8443:0
server certificate does NOT include an ID which matches the server name
AH00558: httpd: Could not reliably determine the server's fully qualified domain name, using
10.0.2.100. Set the 'ServerName' directive globally to suppress this message
[Tue Dec 04 19:21:29.958497 2018] [ssl:warn] [pid 1:tid 140546178489728] AH01909: 10.0.2.100:8443:0
server certificate does NOT include an ID which matches the server name
[Tue Dec 04 19:21:29.959009 2018] [lbmethod_heartbeat:notice] [pid 1:tid 140546178489728] AH02282: No
slotmem from mod_heartmonitor
[Tue Dec 04 19:21:29.966405 2018] [mpm_event:notice] [pid 1:tid 140546178489728] AH00489:
Apache/2.4.37 (Fedora) OpenSSL/1.1.1-pre9 configured -- resuming normal operations
[Tue Dec 04 19:21:29.966464 2018] [core:notice] [pid 1:tid 140546178489728] AH00094: Command line:
'httpd -D FOREGROUND'

We’re now ready for starting it.. and seeing what will happen!

Containers 101 with Podman37

EXAMPLE: Running a container image 2/3
[root@lenny ~]# podman run --name myhttpservice -d httpd
f2ef0980dd67dd45e1ee0a0d05f5084a69a9be00bfa9ca3f9facd07ad57d84b7
[root@lenny ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
f2ef0980dd67 registry.fedoraproject.org/f29/httpd:latest container-entrypoin... 2 minutes ago
Up 2 minutes ago fervent_murdock
[root@lenny ~]#
[root@lenny ~]# podman inspect myhttpservice | grep -i ipaddr
 "SecondaryIPAddresses": null,
 "IPAddress": "10.88.0.4",

[root@lenny ~]# podman inspect myhttpservice # search for exposed ports

[root@lenny ~]# curl 10.88.0.4:8080
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>

<title>Test Page for the Apache HTTP Server on Fedora</title>
...

What about running it in background and check if webserver is working?

Containers 101 with Podman38

EXAMPLE: Running a container image 3/3
[root@lenny ~]# podman run -d httpd
[root@lenny ~]# podman help exec
[root@lenny ~]# podman exec -ti f2ef0980dd67 /bin/bash
bash-4.4$ echo "MySecretData" > my.data
bash-4.4$ cat my.data
MySecretData
bash-4.4$
bash-4.4$ exit
[root@lenny ~]# podman kill f2ef0980dd67
8df6cb35a24660aa797c3d326b2e90348238429a9a3478aba4e0e6beb8eec5ec
[root@lenny ~]# podman ps
[root@lenny ~]# podman run -d httpd
1aeac2d0951323754c0d9b27fe6a23fb4b8a98f466a3e1543933fb07a433e03c
[root@lenny ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
1aeac2d09513 registry.fedoraproject.org/f29/httpd:latest container-entrypoin... 4 seconds ago
Up 4 seconds ago wonderful_snyder
[root@lenny ~]# podman exec -ti 1aeac2d09513 /bin/bash
bash-4.4$ ls
bash-4.4$ id
uid=1001(default) gid=0(root) groups=0(root)

Make some edits and try to restart our container.. Is it really immutable? Yes it is!!

BUILD NEW CONTAINERS

Containers 101 with Podman40

● Builds OCI compliant images
● No daemon - no docker socket
● Does not require a running container
● Can use the hosts subscriptions and

other secrets.
● Fine-grained control over the

commands and content of layer(s)
● Single layer, from scratch images are

made easy and it ensures limited
manifest.

● If needed you can still maintain
Dockerfile based workflow

Base RHEL

OS Update Layer

Java Runtime Layer

Application Layer

Java runtime and
dependencies, and

Application

From scratch,
single layer

From base,
multi-layer

WHY USE BUILDAH ?

Containers 101 with Podman41

● buildah from
○ Build up a container root filesystem from an image or scratch.

● buildah config
○ Adjust defaults in the image’s configuration blob.

● buildah run
○ Run a command in the container’s filesystem using runc.
○ NOT like docker run. Like Dockerfile RUN.

● buildah mount
○ Mount the container’s root filesystem on the host.

● buildah commit
○ Use the container’s changes wrt its image to build a new image.

SO WHAT DOES BUILDAH DO?

Want to know more?

Keep watching the next Fedora Classrooms for an
upcoming session fully dedicated to Buildah!

https://fedoraproject.org/wiki/Classroom/F29

https://fedoraproject.org/wiki/Classroom/F29

ISOLATION

Containers 101 with Podman43

EXAMPLE: Isolation matters!
[root@lenny ~]# podman exec -u root -ti 068f43308502 /bin/bash
bash-4.4# id
uid=0(root) gid=0(root) groups=0(root)
bash-4.4# dnf install --repo fedora -y iputils procps-ng
...
bash-4.4# ping google.com
bash-4.4# vi /etc/resolv.conf
bash-4.4# ping google.com
bash-4.4# date
...
bash-4.4# mv /etc/localtime /etc/localtime.bak
bash-4.4# ln -s /usr/share/zoneinfo/America/New_York /etc/localtime
bash-4.4# date
...
bash-4.4# ps aux
...

Security relies on various operating system feature

NETWORKING

Containers 101 with Podman45

EXAMPLE: Expose your services!
[root@lenny ~]# podman run -d httpd
40255ac12df9ed7bb6f41cda697418021efed910d6d2c2ee85885fa0a60ec3db
[root@lenny ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
40255ac12df9 registry.fedoraproject.org/f29/httpd:latest container-entrypoin... 2 seconds ago
Up 2 seconds ago reverent_curran
[root@lenny ~]# podman inspect 40255ac12df9 | grep -i ipaddr
 "SecondaryIPAddresses": null,
 "IPAddress": "10.88.0.26",

[root@lenny ~]# curl 10.88.0.26:8080
...

[root@lenny ~]# podman kill 40255ac12df9 && podman rm 40255ac12df9
40255ac12df9ed7bb6f41cda697418021efed910d6d2c2ee85885fa0a60ec3db
40255ac12df9ed7bb6f41cda697418021efed910d6d2c2ee85885fa0a60ec3db

[root@lenny ~]# podman run -d -p 8080:8080 httpd
ef5941e6d20ba5fbd8a4fe0a35547c61bf000a2e3f1b7d9c1c4ad34f5a8e3502
[root@lenny ~]# curl localhost:8080
...

Containers isolation is really useful but we may want our services to be reachable by world!

LOGGING

Containers 101 with Podman47

EXAMPLE: What about troubleshooting?
[root@lenny ~]# podman run -d -p 8080:8080 registry.fedoraproject.org/f29/httpd
147826570cf67595c71a96beab92956940e53cf8bc9914225023d33272255903
[root@lenny ~]# curl localhost:8080
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
...
[root@lenny ~]# podman ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
147826570cf6 registry.fedoraproject.org/f29/httpd:latest container-entrypoin... 33 seconds ago
Up 33 seconds ago 0.0.0.0:8080->8080/tcp nostalgic_williams
[root@lenny ~]# podman logs 147826570cf6
...
[Sun Dec 09 11:06:09.733485 2018] [core:notice] [pid 1:tid 140709119864192] AH00094: Command line:
'httpd -D FOREGROUND'
[Sun Dec 09 11:06:27.767573 2018] [autoindex:error] [pid 30:tid 140708497323776] [client
10.88.0.1:42902] AH01276: Cannot serve directory /var/www/html/: No matching DirectoryIndex
(index.html) found, and server-generated directory index forbidden by Options directive
10.88.0.1 - - [09/Dec/2018:11:06:27 +0000] "GET / HTTP/1.1" 403 4650 "-" "curl/7.61.1"
[Sun Dec 09 11:06:30.870588 2018] [autoindex:error] [pid 29:tid 140708776216320] [client
10.88.0.1:42910] AH01276: Cannot serve directory /var/www/html/: No matching DirectoryIndex
(index.html) found, and server-generated directory index forbidden by Options directive
10.88.0.1 - - [09/Dec/2018:11:06:30 +0000] "GET / HTTP/1.1" 403 4650 "-" "curl/7.61.1"

First of all we should inspect logs..

PERSISTENT STORAGE

Containers 101 with Podman49

EXAMPLE: Containers are ephemeral..
[root@lenny ~]# podman inspect httpd | grep -i user
 "User": "1001",
 "User": "1001"

[root@lenny ~]# podman run -ti registry.fedoraproject.org/f29/httpd /bin/bash
bash-4.4$ cat /etc/httpd/conf/httpd.conf | grep DocumentRoot
DocumentRoot "/var/www/html"

[root@lenny ~]# mkdir -p /opt/var/www/html
[root@lenny ~]# cd /opt/var/www/html
[root@lenny html]# wget --page-requisites --convert-links https://registry.fedoraproject.org/
[root@lenny html]# cd
[root@lenny ~]# chown 1001 -R /opt/var

[root@lenny ~]# podman run -d --name myhttpservice -p 8080:8080 -v
/opt/var/www/html:/var/www/html:Z registry.fedoraproject.org/f29/httpd

[root@lenny ~]# podman logs -f myhttpservice
...

Open http://localhost:8080/registry.fedoraproject.org in your Web Browser

So lets attach a persistent storage!

CONTAINERIZED SYSTEM SERVICES

Containers 101 with Podman51 https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman

EXAMPLE: System Services in Containers
[root@lenny ~]# vi /etc/systemd/system/myhttpservice.service
[Unit]
Description=Just and http service with Podman Container

[Service]
Type=simple
TimeoutStartSec=30s
ExecStartPre=-/usr/bin/podman rm "myhttpservice"

ExecStart=/usr/bin/podman run --name myhttpservice -p 8080:8080 -v /opt/var/www/html:/var/www/html:Z
registry.fedoraproject.org/f29/httpd

ExecReload=-/usr/bin/podman stop "myhttpservice"
ExecReload=-/usr/bin/podman rm "myhttpservice"
ExecStop=-/usr/bin/podman stop "myhttpservice"
Restart=always
RestartSec=30

[Install]
WantedBy=multi-user.target

[root@lenny ~]# systemctl daemon-reload

Containers are portable and ready-to-use unit: Why not use them as system services?

https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman

Containers 101 with Podman52 https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman

EXAMPLE: System Services in Containers
[root@lenny system]# systemctl status myhttpservice.service
● myhttpservice.service - Just and http service with Podman Container
 Loaded: loaded (/etc/systemd/system/myhttpservice.service; disabled; vendor preset: disabled)
 Active: inactive (dead)
[root@lenny system]# systemctl start myhttpservice.service
[root@lenny system]# systemctl status myhttpservice.service
● myhttpservice.service - Just and http service with Podman Container
 Loaded: loaded (/etc/systemd/system/myhttpservice.service; disabled; vendor preset: disabled)
 Active: active (running) since Tue 2018-12-11 18:05:55 CET; 5s ago
 Process: 16248 ExecStartPre=/usr/bin/podman rm myhttpservice (code=exited, status=125)
 Main PID: 16269 (podman)
 Tasks: 12 (limit: 4915)
 Memory: 9.8M
 CGroup: /system.slice/myhttpservice.service
 └─16269 /usr/bin/podman run --name myhttpservice -p 8080:8080 -v
/opt/var/www/html:/var/www/html:Z registry.fedoraproject.org/f29/httpd
...
Dec 11 18:05:56 lenny podman[16269]: [Tue Dec 11 17:05:56.412372 2018] [core:notice] [pid 1:tid
140083483450752] AH00094: Command line: 'httpd -D FOREGROUND'
...

Open http://localhost:8080/registry.fedoraproject.org in your Web Browser

Containers are portable and ready-to-use unit: Why not use them as system services?

https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman

Containers 101 with Podman53

https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman

EXAMPLE: System Services in Containers
Containers are portable and ready-to-use unit: Why not use them as system services?

Want to know more?
Take a look at the article I wrote on RH Dev Blog:

https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman

LINKS & DOCS

Containers 101 with Podman55

● Intro to Podman (Red Hat Enterprise Linux 7.6 Beta)
https://developers.redhat.com/blog/2018/08/29/intro-to-podman/

● Containers without daemons: Podman and Buildah available in RHEL 7.6 and RHEL 8
Beta
https://developers.redhat.com/blog/2018/11/20/buildah-podman-containers-without-
daemons/

● Managing containerized system services with Podman
https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-ser
vices-with-podman

● Fedora Registry: https://registry.fedoraproject.org/
● Podman main page: https://podman.io/
● Podman Github project: https://github.com/containers/libpod

Keep watching project page! Podman is continuously evolving!
We’re now at version 0.12.1

Links & Documentation

https://developers.redhat.com/blog/2018/08/29/intro-to-podman/
https://developers.redhat.com/blog/2018/11/20/buildah-podman-containers-without-daemons/
https://developers.redhat.com/blog/2018/11/20/buildah-podman-containers-without-daemons/
https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman
https://developers.redhat.com/blog/2018/11/29/managing-containerized-system-services-with-podman
https://registry.fedoraproject.org/
https://podman.io/
https://github.com/containers/libpod

CREDITS

Containers 101 with Podman57

I want really thanks all the people that help me out filling
this slidedeck:
● OpenShift BU team
● Scott McCarty
● Thomas Cameron and William Henry
● Fedora’s team!

Thanks to..

Thank You!

alezzandro@gmail.com
Contact:

mailto:alezzandro@gmail.com

